由于自已经编译出来的16M版本的系统在安装软件的时候出现了很多的问题:更新配置或者安装软件的时候总是报签名有问题。无奈之下,决定安装官方的版本: https://downloads.openwrt.org/chaos_calmer/15.05/ar71xx/generic/openwrt-15.05-ar71xx-generic-tl-wr841n-v9-squashfs-factory.bin。心里想着应该可以正常开机吧,可惜了我那16M的flash。
怀着忐忑的心情,开始了第一次的开机。。。
一切都很顺利,kernel log中没有发现异常信息,串口终端也可以正常使用。用df命令查看一下flash的可用空间,奇迹发生了:
root@OpenWrt-wr802n-v1:~# df -h Filesystem Size Used Available Use% Mounted on rootfs 12.6M 3.2M 9.4M 25% / /dev/root 2.3M 2.3M 0 100% /rom tmpfs 14.0M 1.2M 12.8M 9% /tmp /dev/mtdblock3 12.6M 3.2M 9.4M 25% /overlay overlayfs:/overlay 12.6M 3.2M 9.4M 25% / tmpfs 512.0K 0 512.0K 0% /dev
看到了吧,16M的flash可以正常被识别,再看看kernel log:
[ 0.680000] m25p80 spi0.0: found w25q128, expected m25p80 [ 0.690000] m25p80 spi0.0: w25q128 (16384 Kbytes) [ 0.690000] 5 tp-link partitions found on MTD device spi0.0 [ 0.700000] Creating 5 MTD partitions on "spi0.0": [ 0.700000] 0x000000000000-0x000000020000 : "u-boot" [ 0.710000] 0x000000020000-0x00000012c55c : "kernel" [ 0.720000] 0x00000012c55c-0x000000ff0000 : "rootfs" [ 0.720000] mtd: device 2 (rootfs) set to be root filesystem [ 0.730000] 1 squashfs-split partitions found on MTD device rootfs [ 0.740000] 0x000000350000-0x000000ff0000 : "rootfs_data" [ 0.740000] 0x000000ff0000-0x000001000000 : "art" [ 0.750000] 0x000000020000-0x000000ff0000 : "firmware"
貌似已经被识别出来了, rootfs_data是什么?这是怎么做到的?
- 分区表是如何创建的
本能地去查看这个文件: https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/arch/mips/ath79/mach-tl-wr841n-v9.c
#include "common.h"
#include "dev-eth.h"
#include "dev-gpio-buttons.h"
#include "dev-leds-gpio.h"
#include "dev-m25p80.h"
#include "dev-wmac.h"
#include "machtypes.h"
#define TL_WR841NV9_GPIO_LED_WLAN 13
#define TL_WR841NV9_GPIO_LED_QSS 3
#define TL_WR841NV9_GPIO_LED_WAN 4
#define TL_WR841NV9_GPIO_LED_LAN1 16
#define TL_WR841NV9_GPIO_LED_LAN2 15
#define TL_WR841NV9_GPIO_LED_LAN3 14
#define TL_WR841NV9_GPIO_LED_LAN4 11
#define TL_WR841NV9_GPIO_BTN_RESET 12
#define TL_WR841NV9_GPIO_BTN_WIFI 17
#define TL_WR841NV9_KEYS_POLL_INTERVAL 20 /* msecs */
#define TL_WR841NV9_KEYS_DEBOUNCE_INTERVAL (3 * TL_WR841NV9_KEYS_POLL_INTERVAL)
static const char *tl_wr841n_v9_part_probes[] = {
"tp-link",
NULL,
};
static struct flash_platform_data tl_wr841n_v9_flash_data = {
.part_probes = tl_wr841n_v9_part_probes,
};
static struct gpio_led tl_wr841n_v9_leds_gpio[] __initdata = {
{
.name = "tp-link:green:lan1",
.gpio = TL_WR841NV9_GPIO_LED_LAN1,
.active_low = 1,
}, {
.name = "tp-link:green:lan2",
.gpio = TL_WR841NV9_GPIO_LED_LAN2,
.active_low = 1,
}, {
.name = "tp-link:green:lan3",
.gpio = TL_WR841NV9_GPIO_LED_LAN3,
.active_low = 1,
}, {
.name = "tp-link:green:lan4",
.gpio = TL_WR841NV9_GPIO_LED_LAN4,
.active_low = 1,
}, {
.name = "tp-link:green:qss",
.gpio = TL_WR841NV9_GPIO_LED_QSS,
.active_low = 1,
}, {
.name = "tp-link:green:wan",
.gpio = TL_WR841NV9_GPIO_LED_WAN,
.active_low = 1,
}, {
.name = "tp-link:green:wlan",
.gpio = TL_WR841NV9_GPIO_LED_WLAN,
.active_low = 1,
},
};
static struct gpio_keys_button tl_wr841n_v9_gpio_keys[] __initdata = {
{
.desc = "Reset button",
.type = EV_KEY,
.code = KEY_RESTART,
.debounce_interval = TL_WR841NV9_KEYS_DEBOUNCE_INTERVAL,
.gpio = TL_WR841NV9_GPIO_BTN_RESET,
.active_low = 1,
}, {
.desc = "WIFI button",
.type = EV_KEY,
.code = KEY_RFKILL,
.debounce_interval = TL_WR841NV9_KEYS_DEBOUNCE_INTERVAL,
.gpio = TL_WR841NV9_GPIO_BTN_WIFI,
.active_low = 1,
}
};
static void __init tl_ap143_setup(void)
{
u8 *mac = (u8 *) KSEG1ADDR(0x1f01fc00);
u8 *ee = (u8 *) KSEG1ADDR(0x1fff1000);
u8 tmpmac[ETH_ALEN];
ath79_register_m25p80(&tl_wr841n_v9_flash_data);
ath79_setup_ar933x_phy4_switch(false, false);
ath79_register_mdio(0, 0x0);
/* LAN */
ath79_eth1_data.phy_if_mode = PHY_INTERFACE_MODE_GMII;
ath79_eth1_data.duplex = DUPLEX_FULL;
ath79_switch_data.phy_poll_mask |= BIT(4);
ath79_init_mac(ath79_eth1_data.mac_addr, mac, 0);
ath79_register_eth(1);
/* WAN */
ath79_switch_data.phy4_mii_en = 1;
ath79_eth0_data.phy_if_mode = PHY_INTERFACE_MODE_MII;
ath79_eth0_data.duplex = DUPLEX_FULL;
ath79_eth0_data.speed = SPEED_100;
ath79_eth0_data.phy_mask = BIT(4);
ath79_init_mac(ath79_eth0_data.mac_addr, mac, 1);
ath79_register_eth(0);
ath79_init_mac(tmpmac, mac, 0);
ath79_register_wmac(ee, tmpmac);
}
static void __init tl_wr841n_v9_setup(void)
{
tl_ap143_setup();
ath79_register_leds_gpio(-1, ARRAY_SIZE(tl_wr841n_v9_leds_gpio),
tl_wr841n_v9_leds_gpio);
ath79_register_gpio_keys_polled(1, TL_WR841NV9_KEYS_POLL_INTERVAL,
ARRAY_SIZE(tl_wr841n_v9_gpio_keys),
tl_wr841n_v9_gpio_keys);
}
MIPS_MACHINE(ATH79_MACH_TL_WR841N_V9, "TL-WR841N-v9", "TP-LINK TL-WR841N/ND v9",
tl_wr841n_v9_setup);
tl_wr841n_v9_part_probes中的”tp-link”是什么?
于是乎又找到了这个文件:https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/drivers/mtd/tplinkpart.c
/* * Copyright (C) 2011 Gabor Juhos <juhosg@openwrt.org> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/magic.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #define TPLINK_NUM_PARTS 5 #define TPLINK_HEADER_V1 0x01000000 #define TPLINK_HEADER_V2 0x02000000 #define MD5SUM_LEN 16 #define TPLINK_ART_LEN 0x10000 #define TPLINK_KERNEL_OFFS 0x20000 #define TPLINK_64K_KERNEL_OFFS 0x10000 struct tplink_fw_header { uint32_t version; /* header version */ char vendor_name[24]; char fw_version[36]; uint32_t hw_id; /* hardware id */ uint32_t hw_rev; /* hardware revision */ uint32_t unk1; uint8_t md5sum1[MD5SUM_LEN]; uint32_t unk2; uint8_t md5sum2[MD5SUM_LEN]; uint32_t unk3; uint32_t kernel_la; /* kernel load address */ uint32_t kernel_ep; /* kernel entry point */ uint32_t fw_length; /* total length of the firmware */ uint32_t kernel_ofs; /* kernel data offset */ uint32_t kernel_len; /* kernel data length */ uint32_t rootfs_ofs; /* rootfs data offset */ uint32_t rootfs_len; /* rootfs data length */ uint32_t boot_ofs; /* bootloader data offset */ uint32_t boot_len; /* bootloader data length */ uint8_t pad[360]; } __attribute__ ((packed)); static struct tplink_fw_header * tplink_read_header(struct mtd_info *mtd, size_t offset) { struct tplink_fw_header *header; size_t header_len; size_t retlen; int ret; u32 t; header = vmalloc(sizeof(*header)); if (!header) goto err; header_len = sizeof(struct tplink_fw_header); ret = mtd_read(mtd, offset, header_len, &retlen, (unsigned char *) header); if (ret) goto err_free_header; if (retlen != header_len) goto err_free_header; /* sanity checks */ t = be32_to_cpu(header->version); if ((t != TPLINK_HEADER_V1) && (t != TPLINK_HEADER_V2)) goto err_free_header; t = be32_to_cpu(header->kernel_ofs); if (t != header_len) goto err_free_header; return header; err_free_header: vfree(header); err: return NULL; } static int tplink_check_rootfs_magic(struct mtd_info *mtd, size_t offset) { u32 magic; size_t retlen; int ret; ret = mtd_read(mtd, offset, sizeof(magic), &retlen, (unsigned char *) &magic); if (ret) return ret; if (retlen != sizeof(magic)) return -EIO; if (le32_to_cpu(magic) != SQUASHFS_MAGIC && magic != 0x19852003) return -EINVAL; return 0; } static int tplink_parse_partitions_offset(struct mtd_info *master, struct mtd_partition **pparts, struct mtd_part_parser_data *data, size_t offset) { struct mtd_partition *parts; struct tplink_fw_header *header; int nr_parts; size_t art_offset; size_t rootfs_offset; size_t squashfs_offset; int ret; nr_parts = TPLINK_NUM_PARTS; parts = kzalloc(nr_parts * sizeof(struct mtd_partition), GFP_KERNEL); if (!parts) { ret = -ENOMEM; goto err; } header = tplink_read_header(master, offset); if (!header) { pr_notice("%s: no TP-Link header found\n", master->name); ret = -ENODEV; goto err_free_parts; } squashfs_offset = offset + sizeof(struct tplink_fw_header) + be32_to_cpu(header->kernel_len); ret = tplink_check_rootfs_magic(master, squashfs_offset); if (ret == 0) rootfs_offset = squashfs_offset; else rootfs_offset = offset + be32_to_cpu(header->rootfs_ofs); art_offset = master->size - TPLINK_ART_LEN; parts[0].name = "u-boot"; parts[0].offset = 0; parts[0].size = offset; parts[0].mask_flags = MTD_WRITEABLE; parts[1].name = "kernel"; parts[1].offset = offset; parts[1].size = rootfs_offset - offset; parts[2].name = "rootfs"; parts[2].offset = rootfs_offset; parts[2].size = art_offset - rootfs_offset; parts[3].name = "art"; parts[3].offset = art_offset; parts[3].size = TPLINK_ART_LEN; parts[3].mask_flags = MTD_WRITEABLE; parts[4].name = "firmware"; parts[4].offset = offset; parts[4].size = art_offset - offset; vfree(header); *pparts = parts; return nr_parts; err_free_parts: kfree(parts); err: *pparts = NULL; return ret; } static int tplink_parse_partitions(struct mtd_info *master, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { return tplink_parse_partitions_offset(master, pparts, data, TPLINK_KERNEL_OFFS); } static int tplink_parse_64k_partitions(struct mtd_info *master, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { return tplink_parse_partitions_offset(master, pparts, data, TPLINK_64K_KERNEL_OFFS); } static struct mtd_part_parser tplink_parser = { .owner = THIS_MODULE, .parse_fn = tplink_parse_partitions, .name = "tp-link", }; static struct mtd_part_parser tplink_64k_parser = { .owner = THIS_MODULE, .parse_fn = tplink_parse_64k_partitions, .name = "tp-link-64k", }; static int __init tplink_parser_init(void) { register_mtd_parser(&tplink_parser); register_mtd_parser(&tplink_64k_parser); return 0; } module_init(tplink_parser_init); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
分区表原来是这么来的,于是了然了。
- rootfs_data分区又是怎么回事呢
首先看一下flash的布局:
Layer0 | raw flash(w25q128), 16384KB | |||||
Layer1 | mtd0
u-boot(tuboot.bin) 128KB |
mtd5 firmware 16192KB=16384-(128+64) |
mtd4 art 64KB |
|||
Layer2 | mtd1
kernel 大约1MB |
mtd2 rootfs |
||||
Layer3 | /dev/root
大约2.3MB |
mtd3 rootfs_data 大约12.6MB |
很显然/dev/root就是根文件系统了,而mtd2什么时候被分成了两个部分了呢?
先贴一下代码(OpenWrt 15.05
build_dir/target-mips_34kc_uClibc-0.9.33.2/linux-ar71xx_generic/linux-3.18.23/drivers/mtd/mtdpart.c):
/* * Simple MTD partitioning layer * * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/kmod.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/magic.h> #include <linux/err.h> #include "mtdcore.h" #include "mtdsplit/mtdsplit.h" #define MTD_ERASE_PARTIAL 0x8000 /* partition only covers parts of an erase block */ /* Our partition linked list */ static LIST_HEAD(mtd_partitions); static DEFINE_MUTEX(mtd_partitions_mutex); /* Our partition node structure */ struct mtd_part { struct mtd_info mtd; struct mtd_info *master; uint64_t offset; struct list_head list; }; static void mtd_partition_split(struct mtd_info *master, struct mtd_part *part); /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure with this macro. */ #define PART(x) ((struct mtd_part *)(x)) /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); struct mtd_ecc_stats stats; int res; stats = part->master->ecc_stats; res = part->master->_read(part->master, from + part->offset, len, retlen, buf); if (unlikely(mtd_is_eccerr(res))) mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; else mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; return res; } static int part_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = PART(mtd); return part->master->_point(part->master, from + part->offset, len, retlen, virt, phys); } static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->_unpoint(part->master, from + part->offset, len); } static unsigned long part_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags) { struct mtd_part *part = PART(mtd); offset += part->offset; return part->master->_get_unmapped_area(part->master, len, offset, flags); } static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; /* * If OOB is also requested, make sure that we do not read past the end * of this partition. */ if (ops->oobbuf) { size_t len, pages; if (ops->mode == MTD_OPS_AUTO_OOB) len = mtd->oobavail; else len = mtd->oobsize; pages = mtd_div_by_ws(mtd->size, mtd); pages -= mtd_div_by_ws(from, mtd); if (ops->ooboffs + ops->ooblen > pages * len) return -EINVAL; } res = part->master->_read_oob(part->master, from + part->offset, ops); if (unlikely(res)) { if (mtd_is_bitflip(res)) mtd->ecc_stats.corrected++; if (mtd_is_eccerr(res)) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_read_user_prot_reg(part->master, from, len, retlen, buf); } static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { struct mtd_part *part = PART(mtd); return part->master->_get_user_prot_info(part->master, len, retlen, buf); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_read_fact_prot_reg(part->master, from, len, retlen, buf); } static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf) { struct mtd_part *part = PART(mtd); return part->master->_get_fact_prot_info(part->master, len, retlen, buf); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_write(part->master, to + part->offset, len, retlen, buf); } static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_panic_write(part->master, to + part->offset, len, retlen, buf); } static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return part->master->_write_oob(part->master, to + part->offset, ops); } static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->_write_user_prot_reg(part->master, from, len, retlen, buf); } static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->_lock_user_prot_reg(part->master, from, len); } static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); return part->master->_writev(part->master, vecs, count, to + part->offset, retlen); } static int part_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); int ret; instr->partial_start = false; if (mtd->flags & MTD_ERASE_PARTIAL) { size_t readlen = 0; u64 mtd_ofs; instr->erase_buf = kmalloc(part->master->erasesize, GFP_ATOMIC); if (!instr->erase_buf) return -ENOMEM; mtd_ofs = part->offset + instr->addr; instr->erase_buf_ofs = do_div(mtd_ofs, part->master->erasesize); if (instr->erase_buf_ofs > 0) { instr->addr -= instr->erase_buf_ofs; ret = mtd_read(part->master, instr->addr + part->offset, part->master->erasesize, &readlen, instr->erase_buf); instr->len += instr->erase_buf_ofs; instr->partial_start = true; } else { mtd_ofs = part->offset + part->mtd.size; instr->erase_buf_ofs = part->master->erasesize - do_div(mtd_ofs, part->master->erasesize); if (instr->erase_buf_ofs > 0) { instr->len += instr->erase_buf_ofs; ret = mtd_read(part->master, part->offset + instr->addr + instr->len - part->master->erasesize, part->master->erasesize, &readlen, instr->erase_buf); } else { ret = 0; } } if (ret < 0) { kfree(instr->erase_buf); return ret; } } instr->addr += part->offset; ret = part->master->_erase(part->master, instr); if (ret) { if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; if (mtd->flags & MTD_ERASE_PARTIAL) kfree(instr->erase_buf); } return ret; } void mtd_erase_callback(struct erase_info *instr) { if (instr->mtd->_erase == part_erase) { struct mtd_part *part = PART(instr->mtd); size_t wrlen = 0; if (instr->mtd->flags & MTD_ERASE_PARTIAL) { if (instr->partial_start) { part->master->_write(part->master, instr->addr, instr->erase_buf_ofs, &wrlen, instr->erase_buf); instr->addr += instr->erase_buf_ofs; } else { instr->len -= instr->erase_buf_ofs; part->master->_write(part->master, instr->addr + instr->len, instr->erase_buf_ofs, &wrlen, instr->erase_buf + part->master->erasesize - instr->erase_buf_ofs); } kfree(instr->erase_buf); } if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } if (instr->callback) instr->callback(instr); } EXPORT_SYMBOL_GPL(mtd_erase_callback); static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); return part->master->_lock(part->master, ofs + part->offset, len); } static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); ofs += part->offset; if (mtd->flags & MTD_ERASE_PARTIAL) { /* round up len to next erasesize and round down offset to prev block */ len = (mtd_div_by_eb(len, part->master) + 1) * part->master->erasesize; ofs &= ~(part->master->erasesize - 1); } return part->master->_unlock(part->master, ofs, len); } static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = PART(mtd); return part->master->_is_locked(part->master, ofs + part->offset, len); } static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->_sync(part->master); } static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); return part->master->_suspend(part->master); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->_resume(part->master); } static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); ofs += part->offset; return part->master->_block_isreserved(part->master, ofs); } static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); ofs += part->offset; return part->master->_block_isbad(part->master, ofs); } static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); int res; ofs += part->offset; res = part->master->_block_markbad(part->master, ofs); if (!res) mtd->ecc_stats.badblocks++; return res; } static inline void free_partition(struct mtd_part *p) { kfree(p->mtd.name); kfree(p); } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. */ int del_mtd_partitions(struct mtd_info *master) { struct mtd_part *slave, *next; int ret, err = 0; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if (slave->master == master) { ret = del_mtd_device(&slave->mtd); if (ret < 0) { err = ret; continue; } list_del(&slave->list); free_partition(slave); } mutex_unlock(&mtd_partitions_mutex); return err; } static struct mtd_part *allocate_partition(struct mtd_info *master, const struct mtd_partition *part, int partno, uint64_t cur_offset) { struct mtd_part *slave; char *name; /* allocate the partition structure */ slave = kzalloc(sizeof(*slave), GFP_KERNEL); name = kstrdup(part->name, GFP_KERNEL); if (!name || !slave) { printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", master->name); kfree(name); kfree(slave); return ERR_PTR(-ENOMEM); } /* set up the MTD object for this partition */ slave->mtd.type = master->type; slave->mtd.flags = master->flags & ~part->mask_flags; slave->mtd.size = part->size; slave->mtd.writesize = master->writesize; slave->mtd.writebufsize = master->writebufsize; slave->mtd.oobsize = master->oobsize; slave->mtd.oobavail = master->oobavail; slave->mtd.subpage_sft = master->subpage_sft; slave->mtd.name = name; slave->mtd.owner = master->owner; slave->mtd.backing_dev_info = master->backing_dev_info; /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone * to have the same data be in two different partitions. */ slave->mtd.dev.parent = master->dev.parent; slave->mtd._read = part_read; slave->mtd._write = part_write; if (master->_panic_write) slave->mtd._panic_write = part_panic_write; if (master->_point && master->_unpoint) { slave->mtd._point = part_point; slave->mtd._unpoint = part_unpoint; } if (master->_get_unmapped_area) slave->mtd._get_unmapped_area = part_get_unmapped_area; if (master->_read_oob) slave->mtd._read_oob = part_read_oob; if (master->_write_oob) slave->mtd._write_oob = part_write_oob; if (master->_read_user_prot_reg) slave->mtd._read_user_prot_reg = part_read_user_prot_reg; if (master->_read_fact_prot_reg) slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; if (master->_write_user_prot_reg) slave->mtd._write_user_prot_reg = part_write_user_prot_reg; if (master->_lock_user_prot_reg) slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; if (master->_get_user_prot_info) slave->mtd._get_user_prot_info = part_get_user_prot_info; if (master->_get_fact_prot_info) slave->mtd._get_fact_prot_info = part_get_fact_prot_info; if (master->_sync) slave->mtd._sync = part_sync; if (!partno && !master->dev.class && master->_suspend && master->_resume) { slave->mtd._suspend = part_suspend; slave->mtd._resume = part_resume; } if (master->_writev) slave->mtd._writev = part_writev; if (master->_lock) slave->mtd._lock = part_lock; if (master->_unlock) slave->mtd._unlock = part_unlock; if (master->_is_locked) slave->mtd._is_locked = part_is_locked; if (master->_block_isreserved) slave->mtd._block_isreserved = part_block_isreserved; if (master->_block_isbad) slave->mtd._block_isbad = part_block_isbad; if (master->_block_markbad) slave->mtd._block_markbad = part_block_markbad; slave->mtd._erase = part_erase; slave->master = master; slave->offset = part->offset; if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { /* Round up to next erasesize */ slave->offset = mtd_roundup_to_eb(cur_offset, master); if (slave->offset != cur_offset) printk(KERN_NOTICE "Moving partition %d: " "0x%012llx -> 0x%012llx\n", partno, (unsigned long long)cur_offset, (unsigned long long)slave->offset); } if (slave->offset == MTDPART_OFS_RETAIN) { slave->offset = cur_offset; if (master->size - slave->offset >= slave->mtd.size) { slave->mtd.size = master->size - slave->offset - slave->mtd.size; } else { printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", part->name, master->size - slave->offset, slave->mtd.size); /* register to preserve ordering */ goto out_register; } } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = master->size - slave->offset; printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); /* let's do some sanity checks */ if (slave->offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", part->name); goto out_register; } if (slave->offset + slave->mtd.size > master->size) { slave->mtd.size = master->size - slave->offset; printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", part->name, master->name, (unsigned long long)slave->mtd.size); } if (master->numeraseregions > 1) { /* Deal with variable erase size stuff */ int i, max = master->numeraseregions; u64 end = slave->offset + slave->mtd.size; struct mtd_erase_region_info *regions = master->eraseregions; /* Find the first erase regions which is part of this * partition. */ for (i = 0; i < max && regions[i].offset <= slave->offset; i++) ; /* The loop searched for the region _behind_ the first one */ if (i > 0) i--; /* Pick biggest erasesize */ for (; i < max && regions[i].offset < end; i++) { if (slave->mtd.erasesize < regions[i].erasesize) { slave->mtd.erasesize = regions[i].erasesize; } } BUG_ON(slave->mtd.erasesize == 0); } else { /* Single erase size */ slave->mtd.erasesize = master->erasesize; } if ((slave->mtd.flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->offset, &slave->mtd)) { /* Doesn't start on a boundary of major erase size */ slave->mtd.flags |= MTD_ERASE_PARTIAL; if (((u32) slave->mtd.size) > master->erasesize) slave->mtd.flags &= ~MTD_WRITEABLE; else slave->mtd.erasesize = slave->mtd.size; } if ((slave->mtd.flags & MTD_WRITEABLE) && mtd_mod_by_eb(slave->offset + slave->mtd.size, &slave->mtd)) { slave->mtd.flags |= MTD_ERASE_PARTIAL; if ((u32) slave->mtd.size > master->erasesize) slave->mtd.flags &= ~MTD_WRITEABLE; else slave->mtd.erasesize = slave->mtd.size; } slave->mtd.ecclayout = master->ecclayout; slave->mtd.ecc_step_size = master->ecc_step_size; slave->mtd.ecc_strength = master->ecc_strength; slave->mtd.bitflip_threshold = master->bitflip_threshold; if (master->_block_isbad) { uint64_t offs = 0; while (offs < slave->mtd.size) { if (mtd_block_isreserved(master, offs + slave->offset)) slave->mtd.ecc_stats.bbtblocks++; else if (mtd_block_isbad(master, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } out_register: return slave; } static int __mtd_add_partition(struct mtd_info *master, const char *name, long long offset, long long length, bool dup_check) { struct mtd_partition part; struct mtd_part *p, *new; uint64_t start, end; int ret = 0; /* the direct offset is expected */ if (offset == MTDPART_OFS_APPEND || offset == MTDPART_OFS_NXTBLK) return -EINVAL; if (length == MTDPART_SIZ_FULL) length = master->size - offset; if (length <= 0) return -EINVAL; part.name = name; part.size = length; part.offset = offset; part.mask_flags = 0; part.ecclayout = NULL; new = allocate_partition(master, &part, -1, offset); if (IS_ERR(new)) return PTR_ERR(new); start = offset; end = offset + length; mutex_lock(&mtd_partitions_mutex); if (dup_check) { list_for_each_entry(p, &mtd_partitions, list) if (p->master == master) { if ((start >= p->offset) && (start < (p->offset + p->mtd.size))) goto err_inv; if ((end >= p->offset) && (end < (p->offset + p->mtd.size))) goto err_inv; } } list_add(&new->list, &mtd_partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(&new->mtd); mtd_partition_split(master, new); return ret; err_inv: mutex_unlock(&mtd_partitions_mutex); free_partition(new); return -EINVAL; } EXPORT_SYMBOL_GPL(mtd_add_partition); int mtd_add_partition(struct mtd_info *master, const char *name, long long offset, long long length) { return __mtd_add_partition(master, name, offset, length, true); } int mtd_del_partition(struct mtd_info *master, int partno) { struct mtd_part *slave, *next; int ret = -EINVAL; mutex_lock(&mtd_partitions_mutex); list_for_each_entry_safe(slave, next, &mtd_partitions, list) if ((slave->master == master) && (slave->mtd.index == partno)) { ret = del_mtd_device(&slave->mtd); if (ret < 0) break; list_del(&slave->list); free_partition(slave); break; } mutex_unlock(&mtd_partitions_mutex); return ret; } EXPORT_SYMBOL_GPL(mtd_del_partition); static int run_parsers_by_type(struct mtd_part *slave, enum mtd_parser_type type) { struct mtd_partition *parts; int nr_parts; int i; nr_parts = parse_mtd_partitions_by_type(&slave->mtd, type, &parts, NULL); if (nr_parts <= 0) return nr_parts; if (WARN_ON(!parts)) return 0; for (i = 0; i < nr_parts; i++) { /* adjust partition offsets */ parts[i].offset += slave->offset; __mtd_add_partition(slave->master, parts[i].name, parts[i].offset, parts[i].size, false); } kfree(parts); return nr_parts; } static inline unsigned long mtd_pad_erasesize(struct mtd_info *mtd, int offset, int len) { unsigned long mask = mtd->erasesize - 1; len += offset & mask; len = (len + mask) & ~mask; len -= offset & mask; return len; } static int split_squashfs(struct mtd_info *master, int offset, int *split_offset) { size_t squashfs_len; int len, ret; ret = mtd_get_squashfs_len(master, offset, &squashfs_len); if (ret) return ret; len = mtd_pad_erasesize(master, offset, squashfs_len); *split_offset = offset + len; return 0; } static void split_rootfs_data(struct mtd_info *master, struct mtd_part *part) { unsigned int split_offset = 0; unsigned int split_size; int ret; ret = split_squashfs(master, part->offset, &split_offset); if (ret) return; if (split_offset <= 0) return; if (config_enabled(CONFIG_MTD_SPLIT_SQUASHFS_ROOT)) pr_err("Dedicated partitioner didn't create \"rootfs_data\" partition, please fill a bug report!\n"); else pr_warn("Support for built-in \"rootfs_data\" splitter will be removed, please use CONFIG_MTD_SPLIT_SQUASHFS_ROOT\n"); split_size = part->mtd.size - (split_offset - part->offset); printk(KERN_INFO "mtd: partition \"%s\" created automatically, ofs=0x%x, len=0x%x\n", ROOTFS_SPLIT_NAME, split_offset, split_size); __mtd_add_partition(master, ROOTFS_SPLIT_NAME, split_offset, split_size, false); } #define UBOOT_MAGIC 0x27051956 static void split_uimage(struct mtd_info *master, struct mtd_part *part) { struct { __be32 magic; __be32 pad[2]; __be32 size; } hdr; size_t len; if (mtd_read(master, part->offset, sizeof(hdr), &len, (void *) &hdr)) return; if (len != sizeof(hdr) || hdr.magic != cpu_to_be32(UBOOT_MAGIC)) return; len = be32_to_cpu(hdr.size) + 0x40; len = mtd_pad_erasesize(master, part->offset, len); if (len + master->erasesize > part->mtd.size) return; if (config_enabled(CONFIG_MTD_SPLIT_UIMAGE_FW)) pr_err("Dedicated partitioner didn't split firmware partition, please fill a bug report!\n"); else pr_warn("Support for built-in firmware splitter will be removed, please use CONFIG_MTD_SPLIT_UIMAGE_FW\n"); __mtd_add_partition(master, "rootfs", part->offset + len, part->mtd.size - len, false); } #ifdef CONFIG_MTD_SPLIT_FIRMWARE_NAME #define SPLIT_FIRMWARE_NAME CONFIG_MTD_SPLIT_FIRMWARE_NAME #else #define SPLIT_FIRMWARE_NAME "unused" #endif static void split_firmware(struct mtd_info *master, struct mtd_part *part) { int ret; ret = run_parsers_by_type(part, MTD_PARSER_TYPE_FIRMWARE); if (ret > 0) return; if (config_enabled(CONFIG_MTD_UIMAGE_SPLIT)) split_uimage(master, part); } void __weak arch_split_mtd_part(struct mtd_info *master, const char *name, int offset, int size) { } static void mtd_partition_split(struct mtd_info *master, struct mtd_part *part) { static int rootfs_found = 0; if (rootfs_found) return; if (!strcmp(part->mtd.name, "rootfs")) { int num = run_parsers_by_type(part, MTD_PARSER_TYPE_ROOTFS); if (num <= 0 && config_enabled(CONFIG_MTD_ROOTFS_SPLIT)) split_rootfs_data(master, part); rootfs_found = 1; } if (!strcmp(part->mtd.name, SPLIT_FIRMWARE_NAME) && config_enabled(CONFIG_MTD_SPLIT_FIRMWARE)) split_firmware(master, part); arch_split_mtd_part(master, part->mtd.name, part->offset, part->mtd.size); } /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * * We don't register the master, or expect the caller to have done so, * for reasons of data integrity. */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; uint64_t cur_offset = 0; int i; printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { slave = allocate_partition(master, parts + i, i, cur_offset); if (IS_ERR(slave)) return PTR_ERR(slave); mutex_lock(&mtd_partitions_mutex); list_add(&slave->list, &mtd_partitions); mutex_unlock(&mtd_partitions_mutex); add_mtd_device(&slave->mtd); mtd_partition_split(master, slave); cur_offset = slave->offset + slave->mtd.size; } return 0; } static DEFINE_SPINLOCK(part_parser_lock); static LIST_HEAD(part_parsers); static struct mtd_part_parser *get_partition_parser(const char *name) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); list_for_each_entry(p, &part_parsers, list) if (!strcmp(p->name, name) && try_module_get(p->owner)) { ret = p; break; } spin_unlock(&part_parser_lock); return ret; } #define put_partition_parser(p) do { module_put((p)->owner); } while (0) static struct mtd_part_parser * get_partition_parser_by_type(enum mtd_parser_type type, struct mtd_part_parser *start) { struct mtd_part_parser *p, *ret = NULL; spin_lock(&part_parser_lock); p = list_prepare_entry(start, &part_parsers, list); if (start) put_partition_parser(start); list_for_each_entry_continue(p, &part_parsers, list) { if (p->type == type && try_module_get(p->owner)) { ret = p; break; } } spin_unlock(&part_parser_lock); return ret; } void register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(register_mtd_parser); void deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); } EXPORT_SYMBOL_GPL(deregister_mtd_parser); /* * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you * are changing this array! */ static const char * const default_mtd_part_types[] = { "cmdlinepart", "ofpart", NULL }; /** * parse_mtd_partitions - parse MTD partitions * @master: the master partition (describes whole MTD device) * @types: names of partition parsers to try or %NULL * @pparts: array of partitions found is returned here * @data: MTD partition parser-specific data * * This function tries to find partition on MTD device @master. It uses MTD * partition parsers, specified in @types. However, if @types is %NULL, then * the default list of parsers is used. The default list contains only the * "cmdlinepart" and "ofpart" parsers ATM. * Note: If there are more then one parser in @types, the kernel only takes the * partitions parsed out by the first parser. * * This function may return: * o a negative error code in case of failure * o zero if no partitions were found * o a positive number of found partitions, in which case on exit @pparts will * point to an array containing this number of &struct mtd_info objects. */ int parse_mtd_partitions(struct mtd_info *master, const char *const *types, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_part_parser *parser; int ret = 0; if (!types) types = default_mtd_part_types; for ( ; ret <= 0 && *types; types++) { parser = get_partition_parser(*types); if (!parser && !request_module("%s", *types)) parser = get_partition_parser(*types); if (!parser) continue; ret = (*parser->parse_fn)(master, pparts, data); put_partition_parser(parser); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); break; } } return ret; } int parse_mtd_partitions_by_type(struct mtd_info *master, enum mtd_parser_type type, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_part_parser *prev = NULL; int ret = 0; while (1) { struct mtd_part_parser *parser; parser = get_partition_parser_by_type(type, prev); if (!parser) break; ret = (*parser->parse_fn)(master, pparts, data); if (ret > 0) { put_partition_parser(parser); printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); break; } prev = parser; } return ret; } EXPORT_SYMBOL_GPL(parse_mtd_partitions_by_type); int mtd_is_partition(const struct mtd_info *mtd) { struct mtd_part *part; int ispart = 0; mutex_lock(&mtd_partitions_mutex); list_for_each_entry(part, &mtd_partitions, list) if (&part->mtd == mtd) { ispart = 1; break; } mutex_unlock(&mtd_partitions_mutex); return ispart; } EXPORT_SYMBOL_GPL(mtd_is_partition); struct mtd_info *mtdpart_get_master(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return (struct mtd_info *)mtd; return PART(mtd)->master; } EXPORT_SYMBOL_GPL(mtdpart_get_master); uint64_t mtdpart_get_offset(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return 0; return PART(mtd)->offset; } EXPORT_SYMBOL_GPL(mtdpart_get_offset); /* Returns the size of the entire flash chip */ uint64_t mtd_get_device_size(const struct mtd_info *mtd) { if (!mtd_is_partition(mtd)) return mtd->size; return PART(mtd)->master->size; } EXPORT_SYMBOL_GPL(mtd_get_device_size);
mtd_device_parse_register()->parse_mtd_partitions() -> tplink_parse_partitions()
从代码()中可以看到,这里从Flash中得到了5个分区:u-boot, kernel, rootfs, art和firmware分区,其中firmware分区中又包含了kernel和rootfs分区,官方image也就在这里面。下面是将rootfs分区分解出rootfs_data分区:
-> add_mtd_partitions()
-> mtd_partition_split(“rootfs”)
-> split_rootfs_data(“rootfs”)
-> __mtd_add_partition(“rootfs_data”)
NOTE:
rootfs分区使用的文件系统为SquashFS, 是ro (readonly)的文件系统。
rootfs_data分区使用的文件系统为JFFS2(全称为Journalling Flash File System v2 ), 是带日志的,不怕意外断电,所以请放心使用。
相关文档请看这里:
- https://wiki.openwrt.org/doc/techref/flash.layout
- https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/drivers/mtd/tplinkpart.c?rev=46662
- https://wiki.openwrt.org/doc/techref/filesystems#squashfs
- https://wiki.openwrt.org/doc/techref/filesystems#overlayfs
哥们,tlwr841n-v9是4M的flash的固件,刷到16M的flash中,是不是还要更改uboot的启动参数,kernel的启动地址啥的?
这要看你怎么写固件:
-如果通过flash编程器写入,那就不影响。我用flash编程器将4M的固件写入到16M的flash中,也可以正常使用。
-通过这种方式: 使用BOOTLOADER的自动更新固件功能(https://www.brobwind.com/archives/459)就需要重新编译bootloader。
-还有这种方式: https://www.brobwind.com/archives/387 也应该不影响
1
博主你好,请问如果要在默认的u-boot, kernel, rootfs, art和firmware这几个分区之外添加额外的分区,应该修改哪些文件的哪些信息呢,最近有这个需求,求指点!不胜感激
你需要在uboot & kenrel里面修改分区表信息,分区表的信息应该是类似偏移+大小的形式,如文章中的 tplink_parse_partitions_offset, 你找找看。
1
1